Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Radiomap characterizes geographical radio spectrum coverage and can facilitate resource allocation and management of wireless networks. One practical radiomap estimation (RME) task is to form a full radiomap from sparse samples collected by sensors or mobile devices. Often, traditional RME approaches focus on statistical data distributions without exploiting the underlying spatial correlations among sparse observations. Utilizing geometric/geographical path correlation, this letter proposes a novel dual-phase RME method based on graph neural networks. In this Dual-phase Graph-based Radiomap Estimation (Dual-GRE) framework, the first phase integrates graph attention (GAT) networks with radio propagation models to construct a coarse-resolution (CR) radiomap to embed the spatial information and physical principles. Phase 2 utilizes a deep convolution neural network that uses the CR radiomap and landscape information to derive fine-resolution radiomaps. Our experimental results demonstrate the power of physics-integrated GAT in capturing the spatial spectrum information, together with the efficiency of the proposed Dual-GRE in radiomap estimation.more » « lessFree, publicly-accessible full text available August 1, 2026
-
The rapid expansion of edge devices and Internet of Things (IoT) continues to heighten the demand for data transport under limited spectrum resources. The goal-oriented communications (GO-COM), unlike traditional communication systems designed for bit-level accuracy, prioritizes more critical information for specific application goals at the receiver. To improve the efficiency of generative learning models for GOCOM, this work introduces a novel noise-restricted diffusion based GO-COM (Diff-GOn) framework for reducing bandwidth overhead while preserving the media quality at the receiver. Specifically, we propose an innovative Noise-Restricted Forward Diffusion (NR-FD) framework to accelerate model training and reduce the computation burden for diffusion-based GO-COMs by leveraging a pre-sampled pseudo-random noise bank (NB). Moreover, we design an early stopping criterion for improving computational efficiency and convergence speed, allowing high quality generation in fewer training steps. Our experimental results demonstrate superior perceptual quality of data transmission at a reduced bandwidth usage and lower computation, making Diff-GOn well-suited for real-time communications and downstream applications.more » « lessFree, publicly-accessible full text available June 13, 2026
-
As a key component of inherent optical properties (IOPs) in ocean color remote sensing, phytoplankton absorption coefficient (aphy), especially in hyperspectral, greatly enhances our understanding of phytoplankton community composition (PCC). The recent launches of NASA’s hyperspectral missions, such as EMIT and PACE, have generated an urgent need for hyperspectral algorithms for studying phytoplankton. Retrieving aphy from ocean color remote sensing in coastal waters has been extremely challenging due to complex optical properties. Traditional methods often fail under these circumstances, while improved machine-learning approaches are hindered by data scarcity, heterogeneity, and noise from data collection. In response, this study introduces a novel machine learning framework for hyperspectral retrievals of aphy based on the mixture-of-experts (MOEs), named PhA-MOE. Various preprocessing methods for hyperspectral training data are explored, with the combination of robust and logarithmic scalers identified as optimal. The proposed PhA-MOE for aphy prediction is tailored to both past and current hyperspectral missions, including EMIT and PACE. Extensive experiments reveal the importance of data preprocessing and improved performance of PhA-MOE in estimating aphy as well as in handling data heterogeneity. Notably, this study marks the first application of a machine learning–based MOE model to real PACE-OCI hyperspectral imagery, validated using match-up field data. This application enables the exploration of spatiotemporal variations in aphy within an optically complex estuarine environment.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Despite some promising results in federated learning using game-theoretical methods, most existing studies mainly employ a one-level game in either a cooperative or competitive environment, failing to capture the complex dynamics among participants in practice. To address this issue, we propose DualGFL, a novel federated learning framework with a dual-level game in cooperative-competitive environments. DualGFL includes a lower-level hedonic game where clients form coalitions and an upper-level multi-attribute auction game where coalitions bid for training participation.At the lower-level DualGFL, we introduce a new auction-aware utility function and propose a Pareto-optimal partitioning algorithm to find a Pareto-optimal partition based on clients' preference profiles.At the upper-level DualGFL, we formulate a multi-attribute auction game with resource constraints and derive equilibrium bids to maximize coalitions' winning probabilities and profits. A greedy algorithm is proposed to maximize the utility of the central server.Extensive experiments on real-world datasets demonstrate DualGFL's effectiveness in improving both server utility and client utility.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Human body motion segmentation plays a major role in many applications, ranging from computer vision to robotics. Among a variety of algorithms, graph-based approaches have demonstrated exciting potential in motion analysis owing to their power to capture the underlying correlations among joints. However, most existing works focus on simpler single-layer geometric structures, whereas multi-layer spatial-temporal graph structure can provide more informative results. To provide an interpretable analysis on multilayer spatial-temporal structures, we revisit the emerging field of multilayer graph signal processing (M-GSP), and propose novel approaches based on M-GSP to human motion segmentation. Specifically, we model the spatial-temporal relationships via multilayer graphs (MLG) and introduce M-GSP spectrum analysis for feature extraction.We present two different M-GSP based algorithms for unsupervised segmentation in the MLG spectrum and vertex domains, respectively. Our experimental results demonstrate the robustness and effectiveness of our proposed methods.more » « less
An official website of the United States government
